
xbattext, an X11 battery monitor for NetBSD

John AnkarstrÃ¶m

ABSTRACT

xbattext is a simple X11 program that displays, in text, the current battery level. Its source code

serves as a good introduction to X11 programnming. It is short, simple and easy to follow, as it

accounts only for a single system – NetBSD. It makes use of both Xt (X toolkit intrinsics) and

Xm (Motif), two of the most popular X libraries. It demonstrates how to access resources from

˜/.Xdefaults, how to display text in various colors and fonts and how to set timers outside of the

main event loop to perform asynchronous tasks that are not triggered by user interaction.

This document is a commented version of the xbattext source code. It is generated with re,

a reference-based literate programming system available at the WWW address http://git.

ankarstrom.se/re/.

If you want to see a screenshot of xbattext, skip ahead to the last page.

#include <err.h>

#include <fcntl.h>

#include <machine/apmvar.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <Xm/Label.h>

Xm/Label.h contains the definitions

for Motif’s label widget, which is

used to display the text. That file,

in turn, includes X11/Xlib.h for us.

machine/apmvar.h has defini-

tions needed in order to inspect the

battery status on NetBSD.

/* interval in seconds */

#define INTERVAL 5
By default, the battery status is

checked every five seconds.

/* low battery level */

#define ALERT 30

void update(XtPointer, XtIntervalId *);

/* resources */

By default, the battery level is con-

sidered to be low if it is below 30

percent.

struct res {

XmFontList font_list;

XmFontList alert_font_list;

XmFontList charge_font_list;

Pixel foreground;

Pixel alert_foreground;

Pixel charge_foreground;

} res;

static XtResource res_opts[] = {

{"fontList", "FontList", XmRFontList, sizeof(XmFontList),

XtOffset(struct res*, font_list), XtRImmediate, (caddr_t...

)NULL},

Tw o structures are created to access

the application’s resources: res,

which will hold the values of the

resources, and res_opts, which

defines how those resources should

be retrieved.

The res structure is going to

be filled by the function XtGetApp-
licationResources using the infor-

mation defined in res_opts.1

{"alertFontList", "AlertFontList", XmRFontList, sizeof(X...

mFontList),

XtOffset(struct res*, alert_font_list), XtRImmediate, (c...

1 For more information about resource management and the structure of the XtResource type, see http://lesstif.

sourceforge.net/doc/super-ux/g1ae03e/part1/chap9.html.



-2-

addr_t)NULL},

{"chargeFontList", "ChargeFontList", XmRFontList, sizeof...

(XmFontList),

XtOffset(struct res*, charge_font_list), XtRImmediate, (...

caddr_t)NULL},

{"foreground", "foreground", XmRPixel, sizeof(Pixel),

XtOffset(struct res*, foreground), XtRImmediate, (caddr_...

t)NULL},

{"alertForeground", "AlertForeground", XmRPixel, sizeof(...

Pixel),

XtOffset(struct res*, alert_foreground), XtRImmediate, (...

caddr_t)NULL},

{"chargeForeground", "ChargeForeground", XmRPixel, sizeo...

f(Pixel),

XtOffset(struct res*, charge_foreground), XtRImmediate, ...

(caddr_t)NULL},

};

/* state changes */

enum {

SET_NONE = 0,

SET_NOALERT = 1 << 0,

SET_NOCHARGE = 1 << 1,

SET_ALERT = 1 << 2,

SET_CHARGE = 1 << 3

} change;

The change variable represents the

possible changes in battery state.

xbattext updates the font and color

of the battery display whenever one

of these state changes occur.

/* application state */

Arg wargs[10];

char *s;

int apmfd, alerting, charging;

struct apm_power_info info;

Widget toplevel, label;

XmString xms;

XtAppContext app_context;

int

main(int argc, char* argv[])

{

There is not space to explain the

function of all variables used by the

program, but some of them deserve

a special mention:

wargs is an array used by XtSet-
Arg, which stores arguments in it, and

XtSetValues, which applies new settings

to a given widget according to the argu-

ments stored in it.

The boolean values alerting and

charging that are set to true whenever

xbattext detects that the battery is low

or that the AC adapter is plugged in.

toplevel = XtVaAppInitialize(

&app_context,

"XBat",

NULL, 0,

&argc, argv,

NULL,

NULL);

Many Xt functions have two vari-

ants: a non-variadic variant, which

uses XtSetArg to collect arguments,

and a variadic variant, marked by

the Va component of its name.

toplevel is the “main” widget

that contains all actual widgets.

if ((apmfd = open("/dev/apm", O_RDONLY)) == -1)

err(1, "open");

if ((s = malloc(5*sizeof(char))) == NULL)

err(1, "malloc");

The battery level is queried through

ioctl requests to /dev/apm. The file

descriptor is closed by the kernel

when the program exits.



-3-

/* load application resources */

XtGetApplicationResources(toplevel,

&res, res_opts, XtNumber(res_opts), NULL, 0);

As mentioned above, XtGetAppli-
cationResources uses the XtResour-
ce list defined earlier to fill the res
structure with the corresponding

resources.

/* create motif label */

label = XtVaCreateManagedWidget("label",

xmLabelWidgetClass, toplevel,

XmNlabel, "",

NULL);

alerting = 0;

charging = 0;

The battery level is displayed in a

Motif label widget. It starts out

containing an empty string.

update(NULL, NULL);

XtRealizeWidget(toplevel);

XtAppMainLoop(app_context);

}

Before starting the main event loop,

the update function is called, which

creates a timer that will run inde-

pendently of the event loop.2

/* update battery status and (re-)add timer */

void

update(XtPointer client_data, XtIntervalId *t)

{

int i;

/* reset temporary variables */

i = 0;

change = SET_NONE;

The update function, which is also

called at the end of each timeout, is

responsible for checking the battery

status and updating the label.

The first argument is a

pointer to a value set by the user

when the timeout is registered. The

second argument contains a pointer

to the timeout ID. Neither argu-

ment is used in this program.

/* get battery info */

memset(&info, 0, sizeof(info));

if (ioctl(apmfd, APM_IOC_GETPOWER, &info) == -1) {

fprintf(stderr, "ioctl APM_IOC_GETPOWER failed\n");

sprintf(s, "?");

goto end;

}

As mentioned above, the battery

status is retrieved through an ioctl
request, APM_IOC_GETPOWER. It

returns an apm_power_info struc-

ture (which must be zeroed first).

/* put battery status into label */

sprintf(s, "%d%%", info.battery_life);

xms = XmStringCreate(s, XmFONTLIST_DEFAULT_TAG);

The battery percentage, contained

in info.battery_life, is written to an

XmString, a special type of string

used by Motif. It is associated with

a “font list element tag”, containing

information about the visual char-

acteristics of the text. We just use

the default.

XtSetArg(wargs[i], XmNlabelString, xms); i++;The wargs array mentioned above

starts to be filled with arguments

that determine the state of the label

widget. The number of arguments

set is kept track of in the i variable.

To begin with, the widget’s label

string is set to the XmString value

defined earlier.

2 For more information about timeouts, see http://motifdeveloper.com/tips/tip16.html.



-4-

/* check charging status */

if (!charging && info.ac_state == APM_AC_ON)

change |= SET_CHARGE;

else if (charging && info.ac_state != APM_AC_ON)

change |= SET_NOCHARGE;

charging = info.ac_state == APM_AC_ON;

The bits SET_CHARGE and SET_

NOCHARGE are added to the charge
bitmap when a change in info.ac_
state is detected.

Note that the value of charg-
ing is used in order to prevent these

font and color changes from unnec-

essarily being applied every time-

out regardless of whether the charg-

ing status has changed.

/* check low battery */

if (!alerting && info.battery_life < ALERT)

change |= SET_ALERT;

else if (alerting && info.battery_life >= ALERT)

change |= SET_NOALERT;

alerting = info.battery_life < ALERT;

The same applies when the pro-

gram checks whether the battery

level is below ALERT, which is set

to 30 by default.

/* prioritize charging and low battery indications */

if (change & SET_CHARGE) change = SET_CHARGE;

if (change & SET_NOCHARGE && alerting) change = SET_ALERT;

if (change & SET_NOALERT && charging) change = SET_CHARGE;

Before the bits in change are acted

upon, some prioritization is neces-

sary. The charging indication over-

rides any other indication. The low

battery indication is activated if the

AC adapter is plugged out, but the

battery is still low. Likewise, the

charging indication is activated if

the battery rises above the ALERT

threshold, but the AC adapter is

still plugged in.

/* act on state changes */

switch(change & 0xf) {

case SET_NOCHARGE:

case SET_NOALERT:

XtSetArg(wargs[i], XtNforeground, res.foreground);

i++;

if (res.font_list != NULL) {

XtSetArg(wargs[i], XmNfontList, res.font...

_list);

i++;

}

break;

case SET_ALERT:

XtSetArg(wargs[i], XtNforeground, res.alert_fore...

ground);

i++;

if (res.alert_font_list != NULL) {

XtSetArg(wargs[i], XmNfontList, res.aler...

t_font_list);

i++;

}

break;

After collecting and prioritizing the

state changes, the foreground color

and font of the label widget is set

accordingly.

Note that if a Pixel (color)

resource is not defined, XtGetAppli-
cationResources gives it the integer

value zero, which also signifies the

color black (thus, the program can-

not differentiate between a missing

value and a value of black). Font

lists, however, are set to null if

undefined. If a font list resource is

undefined, xbattext uses the default

font list instead.

case SET_CHARGE:

XtSetArg(wargs[i], XtNforeground, res.charge_for...

eground);

i++;

if (res.charge_font_list != NULL) {

XtSetArg(wargs[i], XmNfontList, res.char...



-5-

ge_font_list);

i++;

} else if (res.font_list != NULL) {

XtSetArg(wargs[i], XmNfontList, res.font...

_list);

i++;

}

break;

}

set: XtSetValues(label, wargs, i);

XmStringFree(xms);

/* add new timer */

end: XtAppAddTimeOut(app_context, INTERVAL * 1000, update, NULL);

}

Finally, the values collected in

wargs are associated with the label

widget through the XtSetValues
function. The XmString is freed, as

a new one will be created on the

next call to update, which at the

end is registered through the Xt-
AppAddTimeOut function to occur

in INTERVAL seconds.

That is the totality of the xbattext source (almost; a long comment at the beginning of the file, explaining what the

program does and how it should be compiled, was excluded). Hopefully, it shows that graphical UNIX program-

ming is nothing to be scared of. While Xlib, Xt and Xm tend nowadays not to be considered “best practice”, they

have a low barrier to entry, require little resources from the computer and are often installed by default on UNIX

systems. It is better to use worse practices to create something than to use best practices and create nothing at all; if

those are the alternatives, then perhaps best practices aren’t.

If, after reading the source code, you are still wondering why anyone would want a small window displaying

the current battery level, then you should get acquainted with the X11 window manager jwm and its “swallowing”

feature, which removes the border from a given X11 program and displays it in the tray. You can look at it as tray

icons according to the UNIX philosophy. In my tray, xbattext sits right beside xclock and xload.

Figure 1. xload, xbattext and xclock.

jwm is available at https://joewing.net/projects/jwm/. My personal fork of jwm 1.8, which has a more traditional visual

appearance, is available at http://git.ankarstrom.se/jwm/.


