
xbattext, an X11 battery monitor for NetBSD

John AnkarstrÃ¶m

ABSTRACT

xbattext is a simple X11 program that displays, in text, the current battery level. Its source code

serves as a good introduction to X11 programming. It is short, simple and easy to follow, as it

accounts only for a single system – NetBSD. It makes use of both Xt (X toolkit intrinsics) and

Xm (Motif), two of the most popular X libraries. It demonstrates how to access resources from

˜/.Xdefaults, how to display text in various colors and fonts and how to set timers outside of the

main event loop to perform asynchronous tasks that are not triggered by user interaction.

This document is a commented version of the xbattext source code. It is generated with re,

a reference-based literate programming system available at http://git.ankarstrom.se/re/. The

uncommented source code is hosted at http://git.ankarstrom.se/x11/xbattext/.

Feel free to read the three sections of the document out of order. As the structure of the

document strictly mirrors the structure of the source code, it begins with the least interesting part

and ends with the most exciting part; as mentioned above, it is simply an annotated version of the

original source code, not a story in itself. If you want to see a screenshot of the resulting pro-

gram, skip ahead to the last page.

Definitions

#include <err.h>

#include <fcntl.h>

#include <machine/apmvar.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <Xm/Label.h>

Most of the includes regard stan-

dard C features, but there are two

special ones worth mentioning:

Xm/Label.h contains the defi-

nitions for Motif’s label widget,

which is used to display the battery

percentage. It includes the rest of

the relevant X11 headers for us.

machine/apmvar.h defines the

apm_power_info structure, which is

needed in order to inspect the bat-

tery status on NetBSD. It will be

retrieved via an ioctl request, so

sys/ioctl.h is included as well.

/* interval in seconds */

#define INTERVAL 5
The battery status is checked every

five seconds by default.

/* low battery level */

#define ALERT 25
The battery level is considered to

be “low” if it is below 25 percent.

The user is encouraged to

modify this and the previous con-

stant according to his own personal

preferences.

6 June 2021



-2-

/* resources */

struct res {

XmFontList font_list;

XmFontList alert_font_list;

XmFontList charge_font_list;

Pixel foreground;

Pixel alert_foreground;

Pixel charge_foreground;

} res;

static XtResource res_opts[] = {

{"fontList", "FontList", XmRFontList, sizeof(XmFontList),

XtOffset(struct res*, font_list), XtRImmediate, (caddr_t...

)NULL},

{"alertFontList", "AlertFontList", XmRFontList, sizeof(X...

mFontList),

XtOffset(struct res*, alert_font_list), XtRImmediate, (c...

addr_t)NULL},

{"chargeFontList", "ChargeFontList", XmRFontList, sizeof...

(XmFontList),

XtOffset(struct res*, charge_font_list), XtRImmediate, (...

caddr_t)NULL},

{"foreground", "foreground", XmRPixel, sizeof(Pixel),

XtOffset(struct res*, foreground), XtRImmediate, (caddr_...

t)NULL},

{"alertForeground", "AlertForeground", XmRPixel, sizeof(...

Pixel),

XtOffset(struct res*, alert_foreground), XtRImmediate, (...

caddr_t)NULL},

{"chargeForeground", "ChargeForeground", XmRPixel, sizeo...

f(Pixel),

XtOffset(struct res*, charge_foreground), XtRImmediate, ...

(caddr_t)NULL},

};

Tw o structures are needed to access

the application’s resources: res,

which will hold the values of the

resources, and res_opts, which de-

fines the manner in which the re-

sources should be assigned to the

members of the res structure.1

At the beginning of the pro-

gram’s execution, the res structure

is filled by the function XtGetApp-
licationResources according to the

definitions in res_opts.

The Pixel type is an unsigned

long value representing a color, like

black or red3. The XmFontList
type technically represents a list of

fonts, but for all intents and pur-

poses, it will be used here only to

represent a single font selection.

As you might guess from

these resource definitions, xbattext
allows the user to control the color

and font of the battery display

depending on the battery status.

/* state changes */

enum {

SET_NONE = 0,

SET_NOALERT = 1 << 0,

SET_NOCHARGE = 1 << 1,

SET_ALERT = 1 << 2,

SET_CHARGE = 1 << 3

} change;

xbattext inspects the state of the

battery every five seconds. On

ev ery iteration, it updates the per-

centage displayed, but the font and

color are changed only when it

detects a relevant change in the bat-

tery’s state.

When such a change is de-

tected, the change variable is set.

Its possible values represent the

range of relevant changes in battery

state. The program then changes

the color and font depending on the

value of change.

1 “Resources” are the settings set by the user in ˜/.Xdefaults or ˜/.Xresources. For more information about resource

management and the structure of the XtResource type, see http://lesstif.sourceforge.net/doc/super-ux/g1ae03e/part1/

chap9.html.

6 June 2021



-3-

/* application state */

Arg wargs[10];

char *s;

int alerting, apmfd, charging, i;

struct apm_power_info info;

Widget toplevel, label;

XmString xms;

XtAppContext app_context;

void update(XtPointer, XtIntervalId *);

wargs is an array used by XtSetArg,

which stores arguments in it, and

XtSetValues, which applies new set-

tings to a given widget according to

the arguments stored in it.

The boolean values alerting
and charging that are set to true

whenever xbattext detects that the

battery is low or that the AC

adapter is plugged in.

The other variables will be

explained as we go along.

Initial setup

/* program start */

int

main(int argc, char* argv[])

{

toplevel = XtVaAppInitialize(

&app_context,

"xbattext",

NULL, 0,

&argc, argv,

NULL,

NULL);

The application is initialized. top-
level is set, which will serve as the

parent for all widgets.

Note that many Xt functions

have two variants: one that uses Xt-
SetArg to collect arguments, and a

variadic variant, marked by Va.

if ((apmfd = open("/dev/apm", O_RDONLY)) == -1)

err(1, "open");

if ((s = malloc(5*sizeof(char))) == NULL)

err(1, "malloc");

The battery level is queried through

ioctl requests to /dev/apm. The file

descriptor is closed by the kernel

when the program exits.

/* load application resources */

XtGetApplicationResources(toplevel,

&res, res_opts, XtNumber(res_opts), NULL, 0);

XtGetApplicationResources fills the

res structure with the resources set

in res_opts.

/* create motif label */

label = XtVaCreateManagedWidget("label",

xmLabelWidgetClass, toplevel,

XmNlabel, "",

NULL);

alerting = 0;

charging = 0;

The battery level will be displayed

in a Motif label widget. It starts

out containing an empty string.

update(NULL, NULL);

XtRealizeWidget(toplevel);

XtAppMainLoop(app_context);

}

Before starting the main event loop,

the update function is called, which

creates a timer that will run inde-

pendently of the event loop.2

2 For more information about timeouts, see http://motifdeveloper.com/tips/tip16.html.

6 June 2021



-4-

Operation

/* update battery status and (re-)add timer */

void

update(XtPointer client_data, XtIntervalId *t)

{

/* reset temporary variables */

i = 0;

change = SET_NONE;

The update both sets up the timer

and is called at the end of each

timeout. Along the way, it checks

the battery status and updates the

text displayed in the label widget.

The first argument to update
is a pointer to an arbitrary value set

by the user when the timeout is reg-

istered. The second argument con-

tains a pointer to the timeout identi-

fier. Neither argument is used here.

/* get battery info */

memset(&info, 0, sizeof(info));

if (ioctl(apmfd, APM_IOC_GETPOWER, &info) == -1)

err(1, "ioctl");

As mentioned above, the battery

status is retrieved through an ioctl
request, APM_IOC_GETPOWER. It

returns an apm_power_info struc-

ture (which must be zeroed first).

/* put battery status into label */

sprintf(s, "%d%%", info.battery_life);

xms = XmStringCreate(s, XmFONTLIST_DEFAULT_TAG);

The battery percentage, contained

in info.battery_life, is written to an

XmString, a special type of string

used by Motif. It is associated with

a “font list element tag”, containing

information about the visual char-

acteristics of the text. We just use

the default.

XtSetArg(wargs[i], XmNlabelString, xms); i++;The wargs array mentioned above

now starts being filled with argu-

ments that determine the state of

the label widget. The number of

arguments set is kept track of in the

i variable. To begin with, the label

string is set to the XmString value

defined earlier.

/* check charging status */

if (!charging && info.ac_state == APM_AC_ON)

change |= SET_CHARGE;

else if (charging && info.ac_state != APM_AC_ON)

change |= SET_NOCHARGE;

charging = info.ac_state == APM_AC_ON;

The SET_CHARGE or SET_NO

CHARGE bit is added to the change
bitmap when a change in info.ac_
state is detected.

(The value of charging is

checked and updated in order to

prevent the font and color changes

from unnecessarily being applied at

ev ery timeout regardless of whether

the charging status has changed.)

6 June 2021



-5-

/* check low battery */

if (!alerting && info.battery_life < ALERT)

change |= SET_ALERT;

else if (alerting && info.battery_life >= ALERT)

change |= SET_NOALERT;

alerting = info.battery_life < ALERT;

The same applies when the pro-

gram checks whether the battery

level is below ALERT.

/* prioritize charging and low battery indications */

if (change & SET_CHARGE) change = SET_CHARGE;

if (change & SET_NOCHARGE && alerting) change = SET_ALERT;

if (change & SET_NOALERT && charging) change = SET_CHARGE;

Before the bits in change are acted

upon, some prioritization is neces-

sary. The charging indication over-

rides any other indication. The low

battery indication is activated if the

AC adapter is plugged out, but the

battery is still low. Likewise, the

charging indication is activated if

the battery rises above the ALERT

threshold, but the AC adapter is

still plugged in.

(Remember that the change
bitmap reflects a change in state. It

does not reflect the current state.)

/* act on state changes */

switch(change & 0xf) {

case SET_NOCHARGE:

case SET_NOALERT:

XtSetArg(wargs[i], XtNforeground, res.foreground);

i++;

if (res.font_list != NULL) {

XtSetArg(wargs[i], XmNfontList, res.font...

_list);

i++;

}

break;

case SET_ALERT:

XtSetArg(wargs[i], XtNforeground, res.alert_fore...

ground);

i++;

if (res.alert_font_list != NULL) {

XtSetArg(wargs[i], XmNfontList, res.aler...

t_font_list);

i++;

}

break;

After collecting and prioritizing the

state changes, the foreground color

and font of the label widget are set

accordingly.

Note that if a Pixel resource

is not defined, XtGetApplicationRe-
sources gives it the integer value

zero, which also signifies the color

black. Thus, the program cannot

tell the difference between a miss-

ing value and a value of black.

Font lists, however, are set to

null if undefined. If the alert or

charge font list is undefined, xbat-
text uses the main font list instead.

case SET_CHARGE:

XtSetArg(wargs[i], XtNforeground, res.charge_for...

eground);

i++;

if (res.charge_font_list != NULL) {

XtSetArg(wargs[i], XmNfontList, res.char...

ge_font_list);

i++;

} else if (res.font_list != NULL) {

XtSetArg(wargs[i], XmNfontList, res.font...

_list);

i++;

}

break;

6 June 2021



-6-

}

set: XtSetValues(label, wargs, i);

XmStringFree(xms);

/* add new timer */

end: XtAppAddTimeOut(app_context, INTERVAL * 1000, update, NULL);

}

Finally, the values collected in

wargs are associated with the label

widget through the XtSetValues
function. The XmString is freed, as

a new one will be created on the

next call to update, which at the

end is registered through the Xt-
AppAddTimeOut function to occur

in INTERVAL seconds.

That is the totality of the xbattext source (almost; a long comment at the beginning of the file, explaining what the

program does and how it should be compiled, was excluded). Hopefully, it shows that graphical UNIX program-

ming is nothing to be afraid of. While Xlib, Xt and Xm tend nowadays not to be considered “best practice”, they

have a low barrier to entry, require little resources of the computer and are often installed by default on UNIX sys-

tems. It is better to use worse practices to create something than it is to use best practices and create nothing at all; if

those are the alternatives, then perhaps best practices aren’t.

If, after reading all this, you are still wondering why anyone would want a small window on their screen dis-

playing the current battery level, then you should get acquainted with the X11 window manager jwm3 and its “swal-

lowing” feature, which displays an arbitrary X11 program in the tray. It’s like tray icons, but in a UNIX sort of way.

Figure 1. xbattext beside xclock.

3 jwm is available at https://joewing.net/projects/jwm/. The author’s personal fork of jwm 1.8, which has a more tradi-

tional visual appearance, is available at http://git.ankarstrom.se/jwm/.

6 June 2021


