
Toc, a multipass framework for troff

John Ankarström

23 June 2021

TABLE OF CONTENTS

Introduction ...1

Operation ...1

Usage ...1

Examples ...2

Introduction

Toc is a very simple solution – in 50 or so lines – to the problem of generating tables of contents and other forms of

forward references in troff documents. It consists of a shell script called toc and a macro package called toc.tmac.

The toc script is a wrapper around troff, passing the document through the typesetter three times. In every pass,

it sets the values of a registers and a string named te and tf, respectively.

The toc.tmac package defines two macros, named te and to. If the te register is non-zero, the te macro hands

its argument to the tm request, which prints it on standard error, prefixed by “(toc)”. If the tf string is non-empty, the

to macro invokes the so request, reading and inserting lines from the file specified by tf into the troff document.

Operation

In the first pass, the toc script sets te = 1 and tf = empty. This enables the te macro, printing its arguments on stan-

dard error. The lines prefixed with “(toc)”, printed on standard error, are written to the file $g with the “(toc)” prefix

removed.

In the second pass, toc sets te = 1 and tf = $g. This enables the to macro as well, inserting the contents of $g

into the troff source. The te macro is still activated and accordingly prints its arguments on standard error yet an-

other time. The output is processed like earlier and written to the file $h.

In the third and final pass, toc sets te = 0 and tf = $h. This disables te, which means that nothing is printed on

standard error, but to is still enabled, inserting the contents of $h into the document.

Theoretically, three is the number of passes that are necessary – and sufficient – for generating forward refer-

ences, such as tables of contents. Tw o passes are not enough, as the generated references may push a referent to the

next page, rendering the generated references incorrect. To account for the addition of the generated references, a

third pass is needed.

In practice, however, toc has the ability to detect how many passes are needed and will never do more work than

what is necessary.

Usage

Macro package

The te and to macros do not apply any formatting to or perform any processing of their input. The te macro prints

its arguments on standard error verbatim. For example, the request

.te .nr &ref \n%

will print

(toc).nr &ref \n%

on standard error. The “(toc)” prefix is removed before the line is written to the temporary file.

1

When to is invoked, it will literally insert

.nr &ref 3

into the troff source, assuming te was inv oked on the third page.

As such, toc provides the tools needed to create forward references, including tables of contents, but the exact

formatting must be programmed by the user himself.

Script

The toc script is a wrapper around troff and any potential troff pre- or post-processors. On standard input, it expects

the troff source to be processed. As arguments, it takes a shell command line to be evaluated on every pass. For ex-

ample, the invocation

$ <example.t toc refer -prefs \| groff -C

passes the contents of example.t through the refer preprocessor and the groff implementation of troff. Note the es-

caped pipe character; because toc passes its arguments directly to /bin/sh’s eval, arbitrary shell syntax is supported,

as long as it is escaped.1

Note that input must be given on standard in; it cannot be provided as a filename to, for example, refer or groff.

Examples

Table of contents

.so toc.tmac

.eo

.de he

. ft B

. sp 1v
\$*
. br
. ft
. te .the \n% \$*
..
.de the
. nr _ \$1
. shift
. ta 0 \n(.luR
. tc .
\$* \n_
. tc
. br
..
.ec
.sp |1i
.to
.\" ...
.he First heading
.\" ...
.he Second heading

1 This also means that whitespace in arguments is not properly preserved. If you need to include whitespace in the arguments to troff or a troff

preprocessor, create a separate shell script and invoke toc on that.

2

