
Hacking on the mg macro package

John Ankarstr m

What is mg?

Mg is a simple macro package for troff designed to abstract as little as possible from troff itself, while still pro-

viding a powerful framework for writing advanced documents.

How is the source code of mg organized?

If you run grep -n [-]- on the g.tmac source file, you are presented with an overview of mg’s macros:

29:.\" Internal macros ----------------------------

31:.\" @a -- setup document

119:.\" @c -- copy environment

127:.\" (e -- set environment

132:.\" @e -- set extended environment

174:.\" @f -- footer

180:.\" @h -- header

187:.\" @tf -- footer trap

202:.\" @th -- header trap

211:.\" @tn -- footnote trap

233:.\" Inline macros ------------------------------

235:.\" b -- bold font

240:.\" c -- constant-width font

266:.\" i -- italic font

271:.\" x -- bold italic font

277:.\" Hybrid macros ------------------------------

279:.\" q -- quotation

294:.\" Environment macros -------------------------

297:.\" d -- centered date

304:.\" h -- heading

311:.\" l -- literal display

318:.\" p -- paragraph

325:.\" s -- subheading

332:.\" t -- centered title

339:.\" Other macros -------------------------------

341:.\" (-- begin footnote

356:.\") -- end footnote

376:.\" w -- want space

This is a sufficient summary of the entire mg source code, as nothing is performed outside of these macros. All

initialization is performed in the @a macro, which is automatically called at the first invocation of any other mac-

ro.

The above summary reflects a categorization in the macros defined by mg. There are internal and external

macros. The former are to be used within g.tmac itself, while the latter are to be used in mg documents. Among

the external macros, there are inline, environment (or block-level), hybrid and other macros.

The inline macros all follow the same pattern. They take three arguments: the string to be formatted, an

optional suffix and an optional prefix. The hybrid macros act as inline macros when given arguments; otherwise

they act as environment macros.

The environment or block-level macros generally take no arguments (except d). Instead, they activate a

given environment, affecting the formatting of the following text. Each environment macro is associated with a

specific environment, carrying the same one-letter name as the macro itself.

As you can see, the macros in each category are arranged alphabetically.

23 June 2021

-2-

Where is document state stored?

Most state is stored by troff itself within the different environments. In addition, mg associates three extra regis-

ters with each environment: sp, the amount of space to be added by @e before an environment; sq, the same

(except the space is not added if the new environment is identical to the previous one); and ti, the indentation of

the first line in the p environment. These are stored in registers named @ENV_sp, @ENV_sq and @ENV_ti, where

ENV is the name of the associated environment.

The strings %env and %penv contain the name of the current and previous environment.

The @a register is set to 1 if the document has been initialized (i.e. if @a has been invoked).

The @m register is non-zero if “manual footer” mode is active. If @m is non-zero, @tf decrements it by one

and exits when invoked, unless called with the f (force) argument. This is useful if you want to trigger the

footer manually, but do not want the printed footer to trigger the footer trap again.

@.t contains the absolute vertical position of the first trap following the first footnote reference on a page; it

is set and used by) to place the footnote trap in the correct vertical position. @dn contains the height of all col-

lected footnotes on a page; it is set by) and reset to zero by @tn. @n contains the total number of collected

footnotes.

Note that none of these registers and strings should be directly accessed or modified by mg documents.

23 June 2021

