
Hacking on the µ macro package

John Ankarström

What is µ?

µ or mu is a simple macro package for troff designed to abstract as little as possible from troff itself, while still

providing a powerful framework for writing advanced documents.

How is the source code of µ organized?

If you run grep -n [-]- on the u.tmac source file, you are presented with an overview of µ’s macros:

30:.\" Internal macros ----------------------------

32:.\" @a -- setup document

120:.\" @c -- copy environment

128:.\" (e -- set environment

133:.\" @e -- set extended environment

175:.\" @f -- footer

181:.\" @h -- header

188:.\" @tf -- footer trap

204:.\" @th -- header trap

213:.\" @tn -- footnote trap

244:.\" Inline macros ------------------------------

246:.\" b -- bold font

251:.\" c -- constant-width font

279:.\" i -- italic font

284:.\" x -- bold italic font

290:.\" Hybrid macros ------------------------------

292:.\" q -- quotation

307:.\" Environment macros -------------------------

310:.\" d -- centered date

317:.\" h -- heading

324:.\" l -- literal display

331:.\" p -- paragraph

338:.\" s -- subheading

345:.\" t -- centered title

352:.\" Other macros -------------------------------

354:.\" (-- begin footnote

368:.\") -- end footnote

388:.\" w -- want space

This is a sufficient summary of the entire µ source code, as nothing is performed outside of these macros. All

initialization is performed in the @a macro, which is automatically called at the first invocation of any other mac-

ro.

The above summary reflects a categorization in the macros defined by µ. There are internal and external

macros. The former are to be used within u.tmac itself, while the latter are to be used in µ documents. Among

the external macros, there are inline, environment (or block-level), hybrid and other macros.

The inline macros all follow the same pattern. They take three arguments: the string to be formatted, an

optional suffix and an optional prefix. The hybrid macros act as inline macros when given arguments; otherwise

they act as environment macros.

The environment or block-level macros generally take no arguments (except d). Instead, they activate a

given environment, affecting the formatting of the following text. Each environment macro is associated with a

specific environment, carrying the same one-letter name as the macro itself.

As you can see, the macros in each category are arranged alphabetically.

24 June 2021

-2-

Where is document state stored?

Most state is stored by troff itself within the different environments. In addition, µ associates three extra regis-

ters with each environment: sp, the amount of space to be added by @e before an environment; sq, the same

(except the space is not added if the new environment is identical to the previous one); and ti, the indentation of

the first line in the p environment. These are stored in registers named @ENV_sp, @ENV_sq and @ENV_ti, where

ENV is the name of the associated environment.

The strings %env and %penv contain the name of the current and previous environment.

The @a register is set to 1 if the document has been initialized (i.e. if @a has been invoked).

The @m register is non-zero if “manual footer” mode is active. If @m is non-zero, @tf decrements it by one

and exits when invoked, unless called with the f (force) argument. This is useful if you want to trigger the

footer manually, but do not want the printed footer to trigger the footer trap again.

@.t contains the absolute vertical position of the first trap following the first footnote reference on a page; it

is set and used by) to place the footnote trap in the correct vertical position. @dn contains the height of all col-

lected footnotes on a page; it is set by) and reset to zero by @tn. @n contains the total number of collected

footnotes.

Note that none of these registers and strings should be directly accessed or modified by µ documents.

24 June 2021

